Home

Causal DAG Framework for Factor Analysis

Interactive visualization • Total vs Direct effects • What is a DAG?Pearl's d-separation
Confounder (Z)
Treatment/Factor (T)
Mediator (M)
Outcome (Y)
Collider (C)
Counterfactual
MacroVariables[Confounder] GeopoliticalRisk[Confounder] InvestorSentiment[Confounder] Market Regime[Confounder] Size[Confounder] Liquidity[Confounder] Industry[Confounder] HML (Value)[Factor] Momentum[Factor] Low-Vol/BAB[Factor] RiskPremium[Mediator] InstitutionalFlow[Mediator] AnalystCoverage[Collider] Returns[Outcome] Profitability (RMW) [Factor] Investment (CMA) [Factor] Quality (QMJ) [Factor] Survivorship Bias(Selection)[Collider] Backtest Universe(Selection)[Collider] Index Inclusion(e.g., S&P 500)[Collider] MarketMicrostructure[Mediator] Size CounterfactualsSmall CapLarge CapNo SizeMarket Regime CounterfactualsBullNormalBearCrisisLiquidity CounterfactualsHigh LiquidityLow LiquidityNo ConstraintsIndustry CounterfactualsTech OnlyFinance OnlyIndustry NeutralNo FactorSingle FactorMulti-FactorAll FactorsTreatment Counterfactuals

📘 Overview — Show All Paths

This view displays all causal paths in the graph. The Estimand is the total effect of a factor on next-period returns.

do-operator: P(Y | do(T=t)) = ∑_z P(Y | T=t, Z=z) P(Z=z) (valid when all backdoors are closed).
Estimand
Total effect: E[Y | do(T=1)] − E[Y | do(T=0)]
Minimal pre-treatment controls (Z)
Avoid conditioning on
Y = α + τ·T + γ′Z_pre + IndustryFE + DateFE + ε

📈 Path Statistics

Active Paths
25
Backdoors
10
Mediators
5